Skip to content

Inverse Problem Theory

Inverse problems are opposed to direct problems.

Here the theory is denoted by \(g\), the model by \(\vec{m}\) and the data by \(d\).

The direct problem

In a direct problem:

\[ set of\ parameters \rightarrow theory \rightarrow prediction \]

i.e. \(\(g(\vec{m}) = d\)\) This means that a direct problem has a single solution.

Example of direct problem: calculate the travel time of a P-wave.

\[ t = t_{0} \ + \ \frac{\sqrt{(x_{s} - x_{r})^{2} + (z_{s} - z_{r})^{2} }}{V} \]

The inverse problem

In an inverse problem:

\[ observed\ or\ synthetic\ data\ \rightarrow model \]

i.e.

\[\vec{m}=g^{-1}(d)\]
This means that in an inverse problem, there can be multiple solutions.
\(g\) is not bijective.

Over the Gaussian hypothesis, the description of a data having a density of probability \(\rho\) is:

\[ \rho(d) = \frac{1}{\sigma \sqrt{2\pi}} exp \left( \frac{-(d - E(d))^{2}}{2 \sigma^{2}} \right) \]

Knowing the model, it becomes:

\[ \rho(d \mid \vec{m}) = \frac{1}{\sigma \sqrt{2\pi}} exp \left( \frac{-(d - g(\vec{m}))^{2}}{2 \sigma^{2}} \right) \]

For multiple data sets:

\[ \rho(\vec{d} \mid \vec{m}) = \prod_{i=1}^N \rho(d_i \mid \vec{m})= \prod_{i=1}^N \frac{1}{\sigma_i \sqrt{2\pi}} exp \left( \frac{-(d_i - g_i(\vec{m}))^{2}}{2 \sigma_i^{2}} \right) \]

When \(d=d_{obs}\), this equation is also known as the likelyhood:

\[ \rho(\vec{d_{obs}} \mid \vec{m}) = \prod_{i=1}^N \rho(d_{i, obs} \mid \vec{m})= \prod_{i=1}^N \frac{1}{\sigma_i \sqrt{2\pi}} exp \left( \frac{-(d_{i, obs} - g_i(\vec{m}))^{2}}{2 \sigma_i^{2}} \right) \]

Bayes theorem and development

The more general expression of an inverse problem is:

\[ \rho (\vec{m} \mid \vec{d_{obs}}) = \frac{\rho(\vec{m}) \rho( \vec{d_{obs}} \mid \vec{m})}{\int\ \rho(\vec{m}) \rho( \vec{d_{obs}} \mid \vec{m}) \ d\vec{m}} = \mathcal{K} \ \rho(\vec{m}) \rho( \vec{d_{obs}} \mid \vec{m}) \]
\[ \rho (\vec{m} \mid \vec{d_{obs}}) = \frac{\mathcal{K} \rho(\vec{m})}{2} \left( \prod_{i=0}^N \frac{1}{\sigma_i \sqrt{2\pi}} \right) \sum_{i=1}^N exp \left( \frac{-(d_{i, obs} - g_{i}(\vec{m}))^2}{\sigma_i^2} \right) \]

This defines \(\mathcal{X}(\vec{m})\):

\[ \mathcal{X}(\vec{m}) = \frac{(d_{i, obs} - g_{i}(\vec{m}))^2}{\sigma_i^2} \]

Note that \(\mathcal{X}(\vec{m})\) can also be written using a matrix form:

\[ \mathcal{X}(\vec{m}) = (\vec{d_{obs}} - \vec{g}(\vec{m}))^T \begin{pmatrix} 1/\sigma_i^2 & 0 & 0 \\ 0 & 1/\sigma_i^2 & 0 \\ 0 & 0 & 1/\sigma_i^2 \end{pmatrix} (\vec{d_{obs}} - \vec{g}(\vec{m})) \]
\[ \mathcal{X}(\vec{m}) = (\vec{d_{obs}} - \vec{g}(\vec{m}))^T \ C_{d}^{-1} \ (\vec{d_{obs}} - \vec{g}(\vec{m})) \]

\(C_d^{-1}\) is the covariance matrix of the data. If the data are independent, there are only diagonal coefficients, otherwise extradiagonal coefficients appear.

And then:

\[ \rho (\vec{m} \mid \vec{d_{obs}}) = \frac{\mathcal{K} \rho(\vec{m})}{2} \left( \prod_{i=0}^N \frac{1}{\sigma_i \sqrt{2\pi}} \right) \sum_{i=1}^N exp \left( - \mathcal{X}(\vec{m}) \right) \]

If only the covariance matrix \(C_d^{-1}\) is diagonal:

\[ \rho (\vec{m} \mid \vec{d_{obs}}) = \frac{\mathcal{K} \rho(\vec{m})}{(2\pi)^{\frac{N}{2}} \sqrt{det\ C_d}} exp \left( - \frac{1}{2} (\vec{d_{obs}} - \vec{g}(\vec{m}))^T \ C_{d}^{-1} \ (\vec{d_{obs}} - \vec{g}(\vec{m})) \right) \]

There are now two approaches to solve the inverse problem if \(\sigma_i\) is known:

  1. The determinist approach consisting in minimizing \(\mathcal{X}(\vec{m})\). The final result is a single model that is the closest to the input data \(d_{i, obs}\).
  2. The probabilistic approach consisting in exploring the space of models and to describe the shape of \(\mathcal{X}(\vec{m})\).
  3. The stochastic approach testing every set of parameters (inneficient)